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Time Series Analysis

Asymptotic Results for Spatial ARMAModels
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Causal quadrantal-type spatial ARMA�p� q� models with independent and identically
distributed innovations are considered. In order to select the orders �p� q� of
these models and estimate their autoregressive parameters, estimators of the
autoregressive coefficients, derived from the extended Yule–Walker equations are
defined. Consistency and asymptotic normality are obtained for these estimators.
Then, spatial ARMA model identification is considered and simulation study is given.
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Spatial autoregressive moving-average models.
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1. Introduction

Unlike the time series autoregressive moving-average (ARMA) case, several kind
of spatial ARMA models may be defined (cf. Guyon, 1995, Tjøstheim, 1978, 1983).
Most of the different ARMA representations appear to depend on the order chosen
on the lattice �d�

For spatial autoregressive (AR) model having quadrantal representation,
Tjøstheim (1983) considered Yule–Walker and least squares (LS) estimators for
the parameters and proved the strong consistency of both these estimators and
the asymptotic normality for the LS estimator, this even when the innovations of
these AR models are strong martingale-differences. Ha and Newton (1993) proved
that the Yule–Walker estimator considered in Tjøstheim (1983) is in fact biased
for the asymptotic normality. They gave the explicit expression of this bias for
a causal AR random field indexed by a two-dimensional lattice and proposed an
new estimator called “unbiased Yule–Walker estimator” that has the asymptotically
normal property.
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Tjøstheim (1983) used a central limit theorem for strong martingale-differences,
relative to the partial ordering on �d, to obtain the asymptotic normality of the
LS estimators. For weaker martingale-differences, defined with the lexicographic
order, Huang (1992) also obtained a central limit theorem. While using this total
ordering, non symmetric half-space ARMA models can be defined. Huang and
Anh (1992) considered such models on a two-dimensional lattice. They gave a
method based on an inverse model associated with the original one to estimate the
orders and the parameters of the model avoiding in this way the estimation of the
innovations.

Other kind of spatial ARMA process, not depending on the order on �d, can
also be defined. Etchison et al. (1994) introduced two-dimensional lattice separable
ARMA models, which are in fact “products” of two ARMA processes indexed
over one-dimensional lattice set. They studied the properties of the sample partial
autocorrelation function in order to identify orders in AR models. Furthermore,
Shitan and Brockwell (1995) proposed an asymptotic test of separability using the
properties of the autocovariance function of a spatial separable AR model.

In this article, we are interested in model order selection and in AR parameters
estimation of a causal quadrantal ARMA random fields as defined in Tjøstheim
(1978) with independent and identically distributed innovations. In this purpose, we
introduce estimators of the AR coefficients based on a derivation of extended Yule–
Walker equations. These estimators correspond in fact to an extension to spatial
case of the sample generalized partial autocorrelation (GPAC) function known
in time series (Woodward and Gray, 1981). Unlike the one-dimensional lattice
case, several estimators of the GPAC function, that are unbiased for asymptotic
normality, could be defined. Our estimators differ from those retained in Ha and
Newton (1993). We establish that they are consistent and asymptotically normal.
For this, we prove in the first sections some asymptotic properties of sample
autocovariances and sample crosscovariances of two linear random fields. These
results extend those in Choi (2000) for moving-average (MA) random fields and
also generalize the known corresponding results for time series (Brockwell and
Davis, 1987). In the last section, we apply some obtained asymptotic results when
considering the order selection of a spatial ARMA��1� 1�� �1� 1�� model and the
estimation of its AR parameters. A simulation study is also given.

2. Preliminaries and Assumptions

In this section, we recall some main notations on random fields indexed over �d. In
all the following, all the random fields are indexed over �d, with d ≥ 2, and �d is
endowed with the usual partial order that is for s = �s1� � � � � sd�, t = �t1� � � � � td� in
�d, we write s ≤ t if for all i = 1 � � � d, si ≤ ti. For a� b ∈ �d, such that a ≤ b and
a �= b, the following indexing subsets in �d, will be considered:

S�a� b� = �x ∈ �d � a ≤ x ≤ b�� S�a� b� = S�a� b�\�a��
S�a��� = �x ∈ �d � a ≤ x�� S�a��� = S�a���\�a��

Let �Xt�t∈�d be a real valued square integrable random field. Its autocovariance
function 	 is defined by 	�u� v� = ���Xu −��Xu���Xv −��Xv��� for u and v in �d.
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The random field �Xt� is said to be stationary if

��Xt� = m ∀t ∈ �d�

	�u� v� = 	�u+ h� v+ h� ∀u� v� h ∈ �d

and strictly stationary if for all h� a� b ∈ �d, �Xj�j∈S�a�b� and �Xj+h�j∈S�a�b� have the
same joint distributions.

As 	�u� v� = 	�u− v� 0� for all u� v ∈ �d when �Xt�t∈�d is a stationary random
field, it is convenient to redefine the autocovariance function as a function of one
argument as follows:

	�h� = 	�h� 0��

Throughout this work, �
t�t∈�d denotes a family of independent and identically
distributed (i.i.d) centered random variables with variance �2 > 0. We say that a
random field �Xt�t∈�d is linear if for any t,

Xt =
∑
j∈�d

�j
t−j (1)

with
∑ ��j� < �.

Remark 2.1. Linear random fields as defined above are strictly stationary. They are
called MA random fields in Choi (2000).

For two linear random fields �Xt�t∈�d and �Yt�t∈�d , we define their
crosscovariance function as 	xy�h� = ��XtYt+h� for every h in �d.

Given two samples �Xt� t ∈ S�1�N�� and �Yt� t ∈ S�1�N��, we define the sample
crosscovariance function as follows:

	̂xy�h� =
1
Nh

∑
t∈S�1�N�

t+h∈S�1�N�

XtYt+h (2)

with Nh =
∏

i=1���d�N − hi� and where for N ∈ �\�0�, we denote by N the element of
�d whose all components equal N .

In the particular case when Xt = Yt, 	 and 	̂ are, respectively denoted for 	xy
and 	̂xy.

Following Tjøstheim (1978) and Guyon (1995), we say that a random field
�Xt�t∈�d is a spatial ARMA�p� q� with parameters p� q ∈ �d if it is stationary and
satisfies the following equation

Xt −
∑

j∈S�0�p�
jXt−j = 
t +

∑
k∈S�0�q�

�k
t−k (3)

where �j�j∈S�0�p� and ��k�k∈S�0�q� denotes, respectively the autoregressive and the
moving-average parameters with the convention that 0 = �0 = 1. If p (respectively,
q) equals 0, the sum over S�0� p� (respectively, S�0� q�) is supposed to be 0 and the
process is called an AR�p� (respectively, MA�q�) random field.
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The ARMA random field is called causal if it has the following unilateral
expansion

Xt =
∑

j∈S�0���

�j
t−j� (4)

with
∑ ��j� < �.

Remark 2.2. Let �z� = 1−∑
j∈S�0�p� jz

j and ��z� = 1+∑
j∈S�0�q� �jzj where z =

�z1� � � � � zd�. Then, a sufficient condition (c.f. Tjøstheim, 1978) for the random field
to be causal is that the autoregressive polynomial �z� has no zeroes in the closure
of the open disc Dd in �d.

For the identifiability of model (3), we assume in addition that these two
polynomials have no common irreductible factors in the factorial ring ��z1� � � � � zd�.

The ARMA order selection procedure that we consider herein is based on
extended Yule–Walker equations. More precisely, for spatial ARMA�p� q� random
field �Xt�t∈�d with p �= 0, we define for � ∈ S�0��� and � ∈ S�0���, the coefficients


���
� = �

���
��j�j∈S�0��� as the solution, when it exists, of the following extended Yule–

Walker equations,

��Y
���
��t Xt−�−j� = 0 ∀j ∈ S�0� ��� (5)

where Y
���
��t = Xt −

∑
j∈S�0��� 

���
��jXt−j .

If we arrange vectors and matrix in the lexicographic order, these equations can
be rewritten under the form of the following single matricial equation

�
���
� 

���
� = 	

���
� (6)

with for all i� j ∈ S�0� ��

�
���
� �j� i� = 	��+ j − i��

and

	
���
� �j� = 	��+ j��

Given a sample �Xt� t ∈ S�1�N��, we could have considered the extended Yule–
Walker estimator ̄

���
� of 

���
� defined as the solution of the following matricial

equation

�
���

� ̄
���
� = 	̄

���
� �

where for i� j ∈ S�0� ��,

�
���

� �j� i� = R��+ j − i��

	̄
���
� �j� = R��+ j��
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with for h ∈ S�0� ��,

R�h� = 1
Nd

∑
t∈S�1�N�

t−h∈S�1�N�

XtXt−h�

As mentioned above, Ha and Newton (1993) have proved for an AR�p� random
field, indexed over �2, that the estimator ̄���

� is biased for the asymptotic normality.
The bias appears because, in the terms R�h�, the summation set �t ∈ S�1�N�� t − h ∈
S�1�N�� depends on h and simultaneously, the normalization coefficient Nd does
not match to its cardinal. By modifying the normalization coefficient, they proposed
then an unbiased estimator called “unbiased Yule–Walker estimator” for which
they proved the asymptotic normality. Here we take another approach to obtain
unbiased estimators from the extended Yule–Walker equations (5). More precisely,
we define the estimators ̂

���
� = �̂

���
��j�j∈S�0��� of the coefficients �

���
��j�j∈S�0��� by the

following equations

1
Nd

∑
t∈S�1�N�

t−�∈S�1�N�

Ŷ
���
��t Xt−�−j = 0 ∀ j ∈ S�0� �� (7)

where Ŷ
���
��t = Xt −

∑
j∈S�0��� ̂

���
��jXt−j and � = �+ �.

These equations can also be rewritten under the following matricial form

�̂
���
� ̂

���
� = 	̂

���
� (8)

with for all i� j ∈ S�0� ��,

�̂
���
� �j� i� = 1

Nd

∑
t∈S�1�N�

t−�∈S�1�N�

Xt−iXt−�−j

and

	̂
���
� �j� = 1

Nd

∑
t∈S�1�N�

t−�∈S�1�N�

XtXt−�−j �

For the convenience of the reader, we list below assumptions that will be
considered.

Assumption A1. �Xt�t∈�d is a spatial ARMA�p� q� with p �= 0.

Assumption A2. �Xt�∈�d is causal.

Assumption A3. �
t�t∈�d is a family of i.i.d centered random variables with
variance �2 > 0.

Assumption A4. ��
4t � = ��4 with � being some positive constant.
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3. Some Asymptotic Results for Linear Random Fields

We consider now two linear random fields �Xt�t∈�d , �Yt�t∈�d under the form

Xt =
∑
j∈�d

�j
t−j� Yt =
∑
j∈�d

�j
t−j� (9)

with the crosscovariance function 	xy�·�. We first establish below the consistency of
their sample crosscovariance function 	̂xy�·� as defined in (2).

Proposition 3.1. Let �Xt�t∈�d and �Yt�t∈�d be two linear random fields as defined in
(9). Under Assumptions A3 and A4, for all h ∈ �d,

	̂xy�h�
�−−−→

N→�
	xy�h��

where
�−−−→

N→�
means the convergence in probability when N tends to infinity.

Proof. We first note that

	xy�h� = �2
∑
i∈�d

�i�i+h

and

	̂xy�h� =
∑
i∈�d

∑
j∈�d

�i�j
1
Nh

∑
t∈S�1�N�

t+h∈S�1�N�


t−i
t+h−j �

For i = j − h, from the weak law of large numbers

1
Nh

∑
t∈S�1�N�

t+h∈S�1�N�


2t−i

�−−−→
N→�

�2� (10)

Now, let us prove that for i �= j − h,

1
Nh

∑
t∈S�1�N�

t+h∈S�1�N�


t−i
t+h−j

�−−−→
N→�

0� (11)

We have

�

(
1
Nh

∑
t∈S�1�N�

t+h∈S�1�N�


t−i
t+h−j

)2

= 1

N 2
h

∑
t1∈S�1�N�

t1+h∈S�1�N�

∑
t2∈S�1�N�

t2+h∈S�1�N�

��
t1−i
t1+h−j
t2−i
t2+h−j��

If t1 �= t2 and t1 − i �= t2 + h− j, ��
t1−i
t1+h−j
t2−i
t2+h−j� = 0 by the independence
property. If t1 �= t2 and t1 − i = t2 + h− j, ��
t1−i
t1+h−j
t2−i
t2+h−j� =
��
2t1−i���
t2−i���
t1+h−j� = 0 again by the independence property.
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Thus,

�

(
1
Nh

∑
t∈S�1�N�

t+h∈S�1�N�


t−i
t+h−j

)2

= 1

N 2
h

∑
t∈S�1�N�

t+h∈S�1�N�

��
2t−i

2
t+h−j��

Since i �= j − h, we have

�

(
1
Nh

∑
t∈S�1�N�

t+h∈S�1�N�


t−i
t+h−j

)2

= �4

Nh

�

The right-hand side of the above equality converges to 0 as N tends to � so that
(11) follows from Chebyshev’s inequality.

Let us denote for K ∈ �,

ZN�K = ∑
i∈S�−K�K�

∑
j∈S�−K�K�

�i�j
1
Nh

∑
t∈S�1�N�

t+h∈S�1�N�


t−i
t+h−j

and

ZN = ∑
i∈�d

∑
j∈�d

�i�j
1
Nh

∑
t∈S�1�N�

t+h∈S�1�N�


t−i
t+h−j �

From (10) and (11), we deduce that

ZN�K

�−−−→
N→�

ZK = ∑
i∈S�−K�K�

i+h∈S�−K�K�

�i�i+h�
2�

Moreover, ZK converges to 	xy�h� as K tends to �. Following Brockwell and Davis
(1987, Proposition 6.3.9), it suffices then to show that

lim
K→�

lim sup
N→�

��ZN − ZN�K� = 0�

But, this is immediately deduced from the absolute summability of
∑

�j and
∑

�j .
�

Remark 3.1. Tjøstheim (1983) has shown the consistency of 	̂�·� under martingale-
difference assumptions for linear random fields having unilateral expansions like
(4). It could be shown that Proposition 3.1 also holds under martingale-difference
assumptions as in Tjøstheim (1983) by using the same proof with only some slight
modifications.

Choi (2000) proved consistency for various estimators of the autocovariance
function of a spatial linear random field. This result is a special case of
Proposition 3.1 when Xt = Yt.

We consider again the two linear random fields �Xt�t∈�d and �Yt�t∈�d and denote
by 	x�h� and 	y�h� the covariance functions of �Yt� and �Xt�, respectively.
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Proposition 3.2. Let �Xt�t∈�d and �Yt�t∈�d be two linear random fields as in (9). If
Assumptions A3 and A4 hold, then for p ∈ S�0��� and q ∈ S�0���,

lim
N→�

NdCov
(

1
Nd

∑
t∈S�1�N�

YtXt−q−u�
1
Nd

∑
t∈S�1�N�

YtXt−q−v

)
= V�u� v� ∀u� v ∈ S�0� p�

with

V�u� v� = ��− 3�	yx�−q − u�	yx�−q − v�

+ ∑
h∈�d

	y�h�	x�h− u+ v�+ 	yx�−h− q − v�	yx�h− q − u��

Proof. Observe first that for i� j� k� l ∈ �d

��
i
j
k
l� =



��4 if i = j = k = l�

�4 if i = j �= k = l�

�4 if i = k �= j = l�

�4 if i = l �= j = k�

0 otherwise.

Now for h ∈ �d,

��YtXt−q−uYt−h−q−uXt−h−2q−u−v�

= ∑
i∈�d

∑
j∈�d

∑
k∈�d

∑
l∈�d

�i�j−q−u�k−q−u−h�l−2q−u−v−h��
t−i
t−j
t−k
t−l��

From above,

��YtXt−q−uYt−h−q−uXt−h−2q−u−v�

= ��− 3��4
∑
i∈�d

�i�i−q−u�i−q−u−h�i−2q−u−v−h + 	yx�−q − u�	yx�−q − v�

+ 	y�q + u+ h�	x�q + v+ h�+ 	yx�−2q − u− v− h�	yx�h��

It follows that

Cov
(

1
Nd

∑
t∈S�1�N�

YtXt−q−u�
1
Nd

∑
t∈S�1�N�

YtXt−q−v

)

= 1
N 2d

∑
s∈S�1�N�

∑
t∈S�1�N�

��YtXt−q−uYsXs−q−v�− 	yx�−q − u�	yx�−q − v�

= 1
N 2d

∑
s∈S�1�N�

∑
t∈S�1�N�

[
��− 3��4

∑
i∈�d

�i�i−q−u�i+�s−t��i−q+�s−t�−v

+ 	y�t − s�	x�t − s − u+ v�+ 	yx�s − t − q − v�	yx�t − s − q − u�

]
�
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Setting h = t − s and permutating the two summations yield

Nd Cov
(

1
Nd

∑
t∈S�1�N�

YtXt−q−u�
1
Nd

∑
t∈S�1�N�

YtXt−q−v

)

= 1
N 2d

∑
h∈S�−�N−1��N−1�

∏
i=1���d

(
1− �hi�

N

)[
��− 3��4

∑
i∈�d

�i�i−q−u�i−h�i−q−h−v

+ 	y�h�	x�h− u+ v�+ 	yx�−h− q − v�	yx�h− q − u�

]
�

As a consequence,

lim
N→�

Nd Cov
(

1
Nd

∑
t∈S�1�N�

YtXt−q−u�
1
Nd

∑
t∈S�1�N�

YtXt−q−v

)
= ��− 3�	yx�−q − u�	yx�−q − v�+ ∑

h∈�d

	y�h�	x�h− u+ v�

+ 	yx�−h− q − v�	yx�h− q − u��

which is exactly V�u� v�. �

Remark 3.2. Proposition 3.2 extends to random fields the well-known results
for two time series. More precisely, for the special case d = 1 and Xt = Yt,
Proposition 3.2 corresponds to Proposition 7.3.1 in Brockwell and Davis (1987).
Furthermore, for random fields, Lemma 8 in Choi (2000) is a particular case of
Proposition 3.2 when Yt = 
t.

4. Estimation and Identification for a Spatial ARMA

We are now interested in asymptotic behavior of estimators for the autoregressive
parameters of a spatial ARMA�p� q� random field �Xt�t∈�d with p �= 0. First the
consistency of the autoregressive coefficients estimators is stated in the following
proposition.

Proposition 4.1. If Assumptions A1, A2, A3, and A4 hold, then for all i� j ∈ S�0� ��,

�̂
���
� �j� i�

�−−−→
N→�

	��+ j − i�

and

	̂
���
� �j�

�−−−→
N→�

	��+ j��

Proof. For i ∈ S�0� ��, j ∈ S�0� ��, we have

1
Nd

∑
t∈S�1�N�

t−�∈S�1�N�

Xt−iXt−�−j =
1
Nd

∑
t∈S�1�N�

t−i∈S�1�N�
t−�−j∈S�1�N�

Xt−iXt−�−j − R1
N �
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with

R1
N = 1

Nd

∑
t∈I1N

Xt−iXt−�−j

and

I1N = �t ∈ S�1�N�� t − i ∈ S�1�N�� t − �− j ∈ S�1�N�� t − � 
 S�1�N���

But,

#I1N ≤ #�t ∈ S�1�N�� t − � 
 S�1�N�� ≤∑
i

�iN
d−1�

where #E denotes the cardinal of a finite subset E of �d. Therefore,

��R1
N � ≤ 	x�0�

∑
i �i
N

which implies that R1
N = o��1�.

Furthermore,

1
Nd

∑
t∈S�1�N�

t−i∈S�1�N�
t−�−j∈S�1�N�

Xt−iXt−�−j =
1
Nd

∑
t∈S�1�N�

t+�i−�−j�∈S�1�N�

XtXt+�i−�−j� − R2
N

with

R2
N =


0 if i = 0∑
t∈I2N

XtXt+�i−�−j� if i �= 0

where I2N = �t ∈ S�1�N�� t + �i− �− j� ∈ S�1�N�� t + i 
 S�1�N���
As for R1

N , we show that R2
N = o��1�.

Consequently, we have

1
Nd

∑
t∈S�1�N�

t−�∈S�1�N�

Xt−iXt−�−j =
Ni−�−j

N d

1
Ni−�−j

∑
t∈S�1�N�

t+�i−�−j�∈S�1�N�

XtXt+�i−�−j� + o��1�

which converges in probability to 	�i− �− j� by Proposition 3.1. �

From Eqs. (6) and (8), the following theorem is established.

Theorem 4.1. If Assumptions A1, A2, A3, and A4 hold and if for some � ∈ S�0���
and � ∈ S�0���, ����

� is invertible , then

̂
���
�

�−−−→
N→�


���
� �
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Remark 4.1. For causal AR�p� models, Tjøstheim (1983) has proved the strong
consistency of the LS estimator of the vector of autoregressive coefficients under
the assumption that the 
t are strong martingale-differences and strictly stationary.
Since, for an AR�p� model, ̂���

� coincides with the LS estimator when � = p and
� = 0, in the case of i.i.d. innovations, Theorem 4.1 extends in fact Tjøstheim’s result
to ARMA�p� q� random fields.

In order to study the asymptotic normality of the estimator ̂
���
� of the vector

of coefficients ���
� , we consider the S�0� ��-indexed vector �̂ ���

� �̂
���
� − 

���
� � whose jth

component equals

1
Nd

∑
t∈S�1�N�

t−�∈S�1�N�

Y
���
��t Xt−�−j �

First, we consider truncated random fields and sums over S�1�N�. More
precisely, for some K ∈ �, we study the S�0� ��-indexed vector with components

1
Nd

∑
t∈S�1�N�

Y
����K
��t XK

t−�−j� (12)

where

XK
t = ∑

j∈S�0�K�
�j
t−j

and

Y
����K
��t = XK

t − ∑
j∈S�0���


���
��jX

K
t−j

which can be rewritten as follows

Y
����K
��t = ∑

j∈S�0�K+��

�K
j 
t−j

while using the expansion of XK
t .

According to the Cramér–Wold device, the asymptotic normality of the vector
whose jth component is defined in (12) amounts to that of the term

WN�K = 1
Nd

∑
t∈S�1�N�

Y
����K
��t

∑
j∈S�0���

rjX
K
t−�−j

where �rj�j∈S�0��� are arbitrary vectors of reals.
As in Choi (2000), the tool we use to establish the asymptotic normality of the

quantities WN�K is based on m-dependent random fields whose definition is recalled
below.

Definition 4.1. For m ∈ S�0���, a random field �Zt�t∈�d is m-dependent if it is
stationary and if for any s� t ∈ �d, Zs and Zt are independent when �ti − si� > mi for
at least one i = 1 � � � d.
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For such random fields, we quote from Choi (2000) the following central limit
theorem.

Theorem 4.2. Let �Zt�t∈� be a stationary m-dependent random field with mean zero
and autocovariance function 	�·�. If vm =∑

h∈S�−m�m� 	�h� < �, then

lim
N→�

NdVar
(

1
Nd

∑
t∈S�1�N�

Zt

)
= vm

and

1
Nd/2

∑
t∈S�1�N�

Zt

�−−−→
N→�

� �0� vm��

where
�−−−→

N→�
means the convergence in distribution as N tends to infinity.

The following lemma shows that WN�K is a sum of �N + ��-dependent random
variables.

Lemma 4.1. If �
t�t satisfies Assumption A3, then �Y
����K
��t

∑
j∈S�0��� rjXK

t−�−j�t∈�d is a
�K + ��-dependent random field.

Proof. Let Zt =
(
Y

����K
��t XK

t−�−j

)
j∈S�0���. Then

(
Y

����K
��t

∑
j∈S�0��� rjXK

t−�−j

)
t∈�d is �K + ��-

dependent as soon as �Zt�t∈�d is.
Observe that �Zt� is strictly stationary because the 
t are i.i.d.
For h ∈ �d such that hl �= �l + K, for example hl > �l + K, we show that Zt and

Zt+h are independent. For this, observe that

Zt =
( ∑

i∈S�0�K+��

�K
i 
t−i

)( ∑
k∈S�j+��K+j+��

�k−�−j
t−k

)
�

so that Zt is a function of the 
t−i for il ≥ 0. In the same way,

Zt+h =
( ∑

i∈S�−h�K+�−h�

�K
i+h
t−i

)( ∑
k∈S��+j−h�K+�+j−h�

�k−�−j+h
t−k

)

only depends on the 
i for il < 0.
The independence of Zt and Zt+h follows from that of the 
t’s. Hence �Zt� is

�K + ��-dependent. �

Let us denote by 	Kxy�h� the crosscovariance function �
(
YK
t X

K
t+h

)
and by 	Kx �h�,

	Ky �h� the covariances of XK
t and Y

���K
���t

, respectively. The following lemma gives the
asymptotic normality of the truncated term WN�K as N tends to infinity.

Lemma 4.2. Assume that �
t�t satisfies Assumptions A3 and A4. Then

Nd/2�WN�K −��WN�K��
�−−−→

N→�
� �0� vK��
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where vK = r ′VKr with A′ denoting the transpose of a matrix A and for u� v ∈ S�0� ��,

VK�u� v� = ��− 3�	Kyx�−�− u�	Kyx�−�− v�

+ ∑
h∈�d

	Ky �h�	
K
x �h− u+ v�+ 	Kyx�−h− �− v�	Kyx�h− �− u��

Proof. From Theorem 4.2, it follows that

Nd/2�WN�K −��WN�K��
�−−−→

N→�
� �0� vK��

where

vK = lim
N→�

NdVar�WN�K�

= lim
N→�

r ′NdVar
[(

1
Nd

∑
t∈S�1�N�

Y
���K
��t XK

t−�−j

)
j∈S�0���

]
r

= r ′VKr�

From Proposition 3.2,

VK�u� v� = ��− 3�	Kxy�−�− u�	Kxy�−�− v�

+ ∑
h∈�d

	Ky �h�	
K
x �h− u+ v�	Kxy�−h− �− v�	Kxy�h− �− u�

for u� v ∈ S�0� ��. �

The following lemma establishes the asymptotic normality of the quantities

WN = 1
Nd

∑
t∈S�1�N�

Y
���
��t

∑
j∈�0���

rjXt−�−j

which correspond to the original untruncated terms.

Lemma 4.3. If Assumptions A1, A2, A3, and A4 hold, then

Nd/2WN

�−−−→
N→�

� �0� r ′Vr��

where for u� v ∈ S�0� ��

V�u� v� = ∑
h∈�d

	y�h�	x�h− u+ v�+ 	yx�−h− �− v�	yx�h− �− u��

Proof. From Lemma 4.2,

Nd/2�WN�K −��WN�K��
�−−−→

N→�
WK = � �0� vK�
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with vK = r ′VKr. But for u� v ∈ S�0� ��,

lim
K→�

VK�u� v� = ��− 3�	yx�−�− u�	yx�−�− v�

+ ∑
h∈�d

	y�h�	x�h− u+ v�+ 	yx�−h− �− v�	yx�h− �− u��

Moreover, from Eqs. (5), the first term in the asymptotic variance equals 0. As a

consequence, WK

�−−−→
K→�

� �0� r ′Vr��
Now to prove the lemma, we use again Proposition 6.3.9 in Brockwell and

Davis (1987) and show that for all 
 > 0,

lim
K→�

lim sup
N→�

��Nd/2�WN − �WN�K −��WN�K�� > 
� = 0�

But according to Chebyshev’s inequality, it amounts to prove that for every j ∈
S�0� ��,

lim
K→�

lim sup
N→�

NdVar
(

1
Nd

∑
t∈S�1�N�

(
Y

���
��t Xt−�−j − Y

���K
��t XK

t−�−j

)) = 0�

For this, observe that

Var
(

1
Nd

∑
t∈S�1�N�

(
Y

���
��t Xt−�−j − Y

���K
��t XK

t−�−j

))

= Var
(

1
Nd

∑
t∈S�1�N�

Y
���
��t Xt−�−j

)
+ Var

(
1
Nd

∑
t∈S�1�N�

Y
���K
��t XK

t−�−j

)

− 2Cov
(

1
Nd

∑
t∈S�1�N�

Y
���
��t Xt−�−j�

1
Nd

∑
t∈S�1�N�

Y
���K
��t XK

t−�−j

)
�

By Proposition 3.2,

lim
N→�

NdVar
(

1
Nd

∑
t∈S�1�N�

Y
���
��t Xt−�−j

)
= ��− 3�	yx�−�− j�2 + ∑

h∈�d

	y�h�	x�h�+ 	yx�−h− �− j�	yx�h− �− j��

Since 	yx�−�− j� = 0, the last term equals V�j� j�.
Again by Proposition 3.2,

lim
N→�

NdVar
(

1
Nd

∑
t∈S�1�N�

Y
���K
��t XK

t−�−j

)
= ��− 3�	Kyx�−�− j�2 + ∑

h∈�d

	Ky �h�	
K
x �h�+ 	Kyx�−h− �− j�	Kyx�h− �− j��
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But,

	Kx �h� =
∑

j∈S�0�K−h�

�j�j+h�
2�

which converges to 	x�h� when K tends to infinity.
Furthermore,

	Ky �h� =
∑

j∈S�0���

∑
k∈S�0���


���
��j

���
��k	

K
x �h− k+ j��

Thus, 	Ky �h� converges to 	y�h� when K tends to infinity.
In the same way, it can be shown that 	Kyx�h� converges to 	yx�h� so that finally,

lim
K→�

lim
N→�

NdVar
(

1
Nd

∑
t∈S�1�N�

Y
���K
��t XK

t−�−j

)
= V�j� j��

Using the same arguments as in Proposition 3.2,

lim
N→�

Nd/2Cov
(

1
Nd

∑
t∈S�1�N�

Y
���
��t Xt−�−j�

1
Nd

∑
t∈S�1�N�

(
Y

���K
��t XK

t−�−j

))
= ��− 3�	yx�−�− j�	yxK �−�− j�+ ∑

h∈�d

	yyK �h�	xxK �h�

+ 	yxK �−h− �− j�	yKx�h− �− j��

Observing that 	yx�−�− j� = 0 and taking the limit when K tends to infinity yields

lim
K→�

lim
N→�

Nd/2Cov
(

1
Nd

∑
t∈S�1�N�

Y
���
��t Xt−�−j�

1
Nd

∑
t∈S�1�N�

(
Y

���K
��t XK

t−�−j

)) = V�j� j�� �

Now, from Lemma 4.3,

r ′Nd/2

(
1
Nd

∑
t∈S�1�N�

Y
���
��t Xt−�−j

)
j∈S�0���

�−−−→
N→�

� �0� r ′Vr�

for all arbitrary vector of reals r = �rj�j∈S�0���. Hence, from the Cramér–Wold device,
Proposition 4.2 follows.

Proposition 4.2. If Assumptions A1, A2, A3, and A4 hold, then

Nd/2

(
1
Nd

∑
t∈S�1�N�

Y
���
��t Xt−�−j

)
j∈S�0���

�−−−→
N→�

� �0� V��

The next proposition states the asymptotic normality of the statistics

1
Nd

∑
t∈S�1�N�

t−�∈S�1�N�

Y
���
��t Xt−�−j �
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Proposition 4.3. Under Assumptions A1, A2, A3, A4,

Nd/2
(
�̂
���
�

(
̂

���
� − 

���
�

)) �−−−→
N→�

� �0� V��

here for u� v ∈ S�0� ��,

V�u� v� = ∑
h∈�d

	y�h�	x�h− u+ v�+ 	yx�−h− �− v�	yx�h− �− u��

Proof. Let us prove that for all j ∈ S�0� ��,

Nd/2

(
1
Nd

∑
t∈S�1�N�

Y
���
��t Xt−�−j −

1
Nd

∑
t∈S�1�N�

t−�∈S�1�N�

Y
���
��t Xt−�−j

)
= o��1��

By the same calculations as in Proposition 3.2,

�
(

1
Nd/2

∑
t∈S�1�N�\S�1+��N�

Y
���
��t Xt−�−j

)2

= 1
Nd

∑
t∈S�1�N�\S�1+��N�

∑
s∈S�1�N�\S�1+��N�

[
��− 3��4

∑
i∈�d

�i�i−�−j�i+�s−t��i−�+�s−t�−j

+ 	yx��s − t�− �− j�	yx��t − s�− �− j�+ 	y�t − s�	x�t − s�

]
�

Now, set h = t − s and

Th = ��− 3��4
∑
i∈�d

�i�i−�−j�i−h�i−�−h−j + 	yx�−h− �− j�	yx�h− �− j�+ 	y�h�	x�h��

Since
∑ ��j� < � and

∑ ��j� < �, it follows that
∑ �Th� < �. Hence,

�
(

1
Nd/2

∑
t∈S�1�N�\S�1+��N�

Y
���
��t Xt−�−j

)2

≤ 1
Nd

∑
t∈S�1�N�\S�1+��N�

∑
h∈�d

�Th�

≤
∑

i=1���d �i
N

∑
h∈�d

�Th��

Since the last term converges to 0 when N tends to infinity, the proof then ends. �

The following theorem is immediately deduced from Proposition 4.3.

Theorem 4.3. If Assumptions A1, A2, A3, and A4 hold and if for some � ∈ S�0���
and � ∈ S�0���, ����

� is invertible, then

Nd/2�
���
� − ̂

���
� �

�−−−→
N→�

�
(
0� ����

� V�
���′
�

)
with �

���
� = (

�
���
�

)−1
and V as defined in Proposition 4.3.
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Remark 4.2. The asymptotic normality for the LS estimator of the vector of
autoregressive coefficients in the case of a spatial causal AR�p� model was obtained
by Tjøstheim (1983). If the innovations are i.i.d., this result is a special case of
Theorem 4.3, for � = 0 and � = p.

5. Application—Simulation Results

We illustrate now an application of some asymptotic results obtained above to
identify the following two-dimensional lattice spatial ARMA��1� 1�� �1� 1��:

Xt − 0�8X�t1−1�t2�
+ 0�56X�t1−1�t2−1� − 0�7X�t1�t2−1�

= 
t + 0�5
�t1−1�t2�
+ 0�3
�t1−1�t2−1� + 0�8
�t1�t2−1��

where �
t�t∈�2 is a family of i.i.d. normal random variables with mean 0 and variance
1. 500 replications from the above ARMA model over the rectangle S�1� 500� are
simulated and the sample mean and the sample standard deviation of the ̂

���
��� are

computed for several values of � and �. These results are summarized in Table 1
below where the values into brackets are the standard deviations and the symbol −
denotes a value greater than 10.

The criterion we choose here for identifying spatial ARMAmodel is based on the
estimators �̂���

���� that correspond to a spatial version of the sample GPAC. Indeed,
as for the one-dimensional lattice case (see Choi, 1991, 1992; Woodward and Gray,
1981), we have the following properties that could be deduced from Remark 2.2:

���
p�p = p for � ≥ q

and


�q�
��� = 0 for � ≥ p� � �= p�

Table 1
Sample mean and sample standard deviation of ̂���

��� over 500 replications

�\� �0� 0� �1� 0� �1� 1� �0� 1� �2� 0� �2� 1� �2� 2� �1� 2� �0� 2�

�1� 0� 0.8839 0.8001 0.8000 0.8817 0.8001 0.8000 0.7999 0.7999 0.8816
(0.0015) (0.0028) (0.0033) (0.0019) (0.0035) (0.0041) (0.0059) (0.0048) (0.0030)

�1� 1� −0.7503 −0.6594 −0.5598 −0.6101 1.2633 −0.7943 −0.9463 −0.7276 −0.5804
(0.0013) (0.0038) (0.0070) (0.0031) (–) (7.5309) (4.8276) (2.4618) (2.4876)

�0� 1� 0.8458 0.8437 0.6997 0.6998 0.8437 0.6996 0.6995 0.6997 0.6998
(0.0019) (0.0022) (0.0047) (0.0041) (0.0030) (0.0059) (0.0082) (0.0065) (0.0057)

�2� 0� −0.3389 0.0002 0.0002 −0.3291 8.4097 −0.4678 0.0807 0.0004 −0.3290
(0.0034) (0.0123) (0.0148) (0.0040) (–) (4.9409) (–) (0.0211) (0.0060)

�2� 1� 0.2977 −0.0001 −0.0003 0.1986 −0.7826 0.2643 3.4385 4.1879 0.2587
(0.0021) (0.0074) (0.0185) (0.0050) (–) (5.5446) (–) (–) (6.5056)

�2� 2� −0.1814 0.0000 0.0000 −0.0005 −1.7500 −0.0068 −2.6723 −0.0063 0.0083
(0.0022) (0.0065) (0.0180) (0.0051) (–) (0.1577) (–) ( 0.1868 ) (5.4054)

�1� 2� 0.3932 0.2865 −0.0018 −0.0001 0.6953 0.8073 0.6075 4.8234 3.3525
(0.0018) (0.0058) (0.0179) (0.0055) (6.1800) (6.2602) (7.0709) (–) (–)

�0� 2� −0.4341 −0.4268 0.0001 0.0002 −0.4268 −0.0002 1.0313 −0.5992 1.2197
(0.0032) (0.0038) (0.0125) (0.0109) (0.0050) (0.0158) (–) (7.6359) (–)
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Furthermore, from Theorems 4.1 and 4.3, we have

̂
���
���

�−−−→
N→�


���
���

and

̂
���
����

�−−→
n→� �

(


���
���� ��

���
� V�

���′
� ����

)
�

Applying the properties of the
(
̂

���
���

)
to the ARMA��1� 1�� �1� 1�� model

considered here, we have

(i) ̂
���

�1�1���1�1� = ̂ for � ≥ q = �1� 1�,

(ii) ̂
��1�1��
����

∼ 0 for � ≥ p = �1� 1�� � �= p.

Table 1 in conjunction with both the above properties clearly allows identifying
the ARMA��1� 1�� �1� 1�� model. Indeed, when inspecting the values of the sample
standard deviation of the estimators in Table 1, first, property (i) is well revealed
at the intersection of the 3rd row with the 4th column (bold characters), secondly,
property (ii) is well detected at the intersection of the 4th column with the 6th, 7th,
and 8th rows (bold characters).

For one replication �Xt� t ∈ S�1� 500��, the obtained estimates of the AR
coefficients are �0�7989�−0�5628� 0�7038�.
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