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Abstract

We consider a birth and growth process with germs being born according to a Poisson point process whose intensity measure
is invariant under translations in space. The germs can be born in unoccupied space and then start growing until they occupy the
available space. In this general framework, the crystallization process can be characterized by a random field which, for any point
in the state space, assigns the first time at which this point is reached by a crystal. Under general conditions on the growth speed
and geometrical shape of free crystals, we prove that the random field is mixing in the sense of ergodic theory, and we also obtain
estimates for the absolute regularity coefficient. To cite this article: Y. Davydov, A. Illig, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Propriétés d’ergodicité des processus géométriques de cristallisation. Nous nous intéressons à la cristallisation d’un domaine
par des germes apparaissant selon un processus ponctuel de Poisson d’intensité invariante par translation spatiale. Les germes se
fixent uniquement en zone libre et se mettent ensuite à croître pour former des cristaux qui occupent progressivement l’espace.
Ce procédé peut être décrit par le champ aléatoire donnant en tout point de l’espace le premier instant de recouvrement par un
cristal. Nous démontrons sous des hypothèses générales sur la vitesse de croissance et la forme des cristaux libres que le processus
est mélangeant au sens de la théorie ergodique et obtenons des estimations du coefficient de régularité absolue. Pour citer cet
article : Y. Davydov, A. Illig, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the crystallization process which deals with points, called germs, g = (xg, tg) in the space R
d × R

+,
where tg denotes random time and xg random location. The germ birth process N is a Poisson point process on
R

d × R
+ with intensity measure Λ. Once germs, or crystallization centers, are born, crystals grow if their location is

not yet occupied by another crystal. When two crystals meet, the growth stops at the meeting point.
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To describe crystal expansion in unoccupied space, for a germ g = (xg, tg) and a point x in R
d , let Ag(x) be the

time when the point x is reached by the crystal born in the location xg at the time tg . The crystallization process is
then characterized by the random field (r.f.) ξ , which, for any location x in R

d , assigns its crystallization time

ξ(x) = inf
g∈N

Ag(x).

Consequently, at time t , a free crystal is the set Cg(t) = {x |Ag(x) � t}.
The above model was introduced by Kolmogorov [3] and, independently, by Johnson and Mehl [2]. It has been

intensively studied by many authors, including Møller [5–7], Micheletti and Capasso [4], who represent the main ap-
proaches. In these publications one can also find exhaustive lists of references. A very large part of these investigations
deals with geometrical structures of mosaics after all the germs have been grown. In contrast, our main attention in the
current work is on the ergodic properties of the crystallization process, thus providing a base for efficient estimation
of model parameters and subsequent analysis of limit theorems such as asymptotical normality.

The rest of the paper is organized as follows. Under general assumptions, we demonstrate in Section 2 that the
r.f. ξ is mixing in the sense of ergodic theory. In Section 3 we provide estimates of the absolute regularity coefficient
for the r.f. ξ .

2. Assumptions on the birth and growth process and mixing

Germs are born according to a Poisson point process N on E = R
d × R

+. That is, germs are random points
g = (xg, tg) in E, where xg is the location in the growth space R

d and tg is the birth time on the time axis R
+. We

suppose that the intensity measure of N has the expression

Λ = λd × m,

where λd is the Lebesgue measure on R
d and m is a measure on R

+ such that m([0, a]) < ∞ for all a > 0. The cases
to be considered below (cf. [5]) are those with a discrete measure m and with a density measure m(dt) = αtβ−1λ(dt),
where α,β > 0 are parameters. Since the Lebesgue measure is invariant under translations on R

d , we have that N is
space homogeneous.

For time t , we consider the so called causal cone Kt = {g ∈ E | Ag(0) � t}, which consists of all possible germs
that can reach the origin before t . The measure Λ(Kt) of the causal cone Kt is denoted by F(t). These set and function
play important roles in the sequel.

We assume that, for any germ g = (xg, tg), the associated free crystal at time t � tg is equal to Cg(t) =
xg

⊕[V (t) − V (tg)]K , where K is a convex compact set such that 0 ∈ K◦ with
⊕

denoting the Minkowski sum,
and V (t) is an absolutely continuous function of t whose value is the distance achieved with positive speed v(t). Fi-
nally, let M be a constant such that v � M , and let A = DK/dK , where dK is the diameter of the greatest ball centered
at zero and contained in K , whereas DK is the diameter of the smallest ball centered at zero and containing K . Note
that when K = B(0,1) and v = M , then we have the well-known model which corresponds to the linear expansion in
all directions at a constant speed.

We next consider the mixing of the r.f. ξ . To start with, we assume without loss of generality that ξ is a canonical
r.f. on (Ω,F ,P). Namely, we suppose that Ω = R

T with T = R
d , F is the σ -field generated by the cylinders, and P

is the distribution of ξ so that for all ω ∈ Ω , ξ(x,ω) = ω(x). Since the Lebesque measure on R
d is invariant under

translations, the r.f. ξ is homogeneous, that is, P is invariant under the translations Sh(ω)(x) = ω(x + h) for all h

in R
d . We say that the canonical r.f. is mixing if, for all A and B ∈ F ,

P
{
A ∩ S−1

h (B)
} −→|h|→∞ P{A}P{B}.

Note that every mixing r.f. in the above sense is ergodic. We have the following theorem:

Theorem 2.1. For d � 1, the r.f. ξ = (ξ(x))x∈Rd is mixing.
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3. Absolute regularity property

Keeping in mind that in our context the process ξ is (strictly) stationary, when d = 1, the strong mixing coefficient
α(r) is defined, for all r � 0, by the equation

α(r) = sup
A∈F(−∞,0],B∈F[r,+∞)

∣∣P(A ∩ B) − P(A)P(B)
∣∣,

where F(−∞,0] = σ {ξ(x), x � 0} and F[r,+∞) = σ {ξ(x), x � r} are the σ -fields generated by the random variables
inside the corresponding braces. The absolute regularity coefficient is

β(r) = ‖P(−∞,0]∪[r,+∞) −P(−∞,0] ×P[r,+∞)‖var,

where ‖μ‖var is the total variation norm of a signed measure μ, and PT is the distribution of the restriction ξ|T in
the set C(T ) of continuous real-valued functions defined on T . Note that C(T1 ∪ T2) is canonically identified with
C(T1) × C(T2) when T1 ∩ T2 = ∅. Since α(r) � 2−1β(r), the absolute regularity of the r.f. ξ implies its α-mixing.

Theorem 3.1. If d = 1, then the r.f. (or random process) ξ is absolutely regular and

β(r) � C1e−F(C2r),

where C1 and C2 are constants, e.g., C1 = 16 and C2 = 1/(2M).

We next elaborate on the coefficient of absolute regularity when d � 2. Let FT be the σ -field generated by the
random variables ξ(x) for all x in a subset T of R

d . For two disjoint subsets T1 and T2, and for two σ -fields FT1 and
FT2 , the absolute regularity coefficient is

β(T1, T2) = ‖PT1∪T2 −PT1 ×PT2‖var,

where PT denotes the distribution of the restriction ξ|T . Note that β(T1, T2) can also by written as the expectation
E‖P{ξ|T1 |FT2 } − PT1‖var, where P{ξ|T1 |FT2 } is the conditional distribution of ξ|T1 given FT2 In the following theorem
we obtain an upper bound for β(T1, T2) when the two quadrants T1 and T2 are separated by a 2r-width band. Since
the r.f. ξ is homogeneous, we can choose T1 = ∏d

i=1(−∞,0] and T2 = ∏d
i=1[ai,+∞), supposing that

∑d
1 ai =

2r
√

d .

Theorem 3.2. When d � 2, then

β(T1, T2) � C1

∞∑

k=1

kd−1e−F(C2k),

where we can choose C1 = 16, C2 = 2R/(dH), H = 2(A + M) and R = r/H .

Our next theorem gives an upper bound for the two enclosed domains T1 = [−a, a]d and T2 = ([−b, b]d)c sepa-

rated by a 2r-width polygonal band, assuming r = (b−2a)
√

d
4 > 0.

Theorem 3.3. When d � 2, then

β(T1, T2) � C1

∞∑

k=1

kd−1e−F(C2k),

where we can choose C1 = 8(d2d + 1), C2 = 2R/(dH), H = 2(A + M) and R = r/H .

The main idea of proof is based on substituting the original process ξ by the process

ξT (x) = inf
g∈N , |xg |�T

Ag(x).

This relies on the fact that, with a probability as close to 1 as desired, we have the equality ξ(x) = ξT (x) for all
|x| � r(T ), where r(T ) → ∞ when T → ∞. Hence, we can utilize the independence of ξT and ShξT for all h such
that |h| > 2r(T ).
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We conclude this section with two estimates of the majorizing series in Theorems 3.2 and 3.3. First, if F(t) �
(d + δ) ln t − lnγ with δ, γ > 0, then we obtain a polynomial estimate

∞∑

k=1

kd−1e−F(Ck) � γ ′C−(d+δ) with γ ′ = γ

∞∑

k=1

k−(1+δ).

Second, if F(t) � γ tδ − c with δ, γ, c > 0, then we have a super-exponential estimate
∞∑

k=1

kd−1e−F(Ck) � c2e−γCδ

with c2 = c1

∞∑

k=1

kd−1e−γCδ(kδ−1).

4. Conclusion

Theorem 2.1 can be directly applied to establish consistency of different functionals (such as volume fraction,
mean number of crystals in the unit volume) and parameters of the model (see [1]). Theorems 3.2 and 3.3 provide a
natural way to apply known limit theorems concerning β-mixing fields to establish asymptotical normality of these
estimates.
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